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Abstract
The electronic properties of strained Si1−x Gex alloys epitaxially grown
on (001) Si1−yGey relaxed substrates for any x and y Ge concentrations
are presented here. Our calculations are based on an sp3d5s∗ nearest-
neighbour tight-binding Hamiltonian and exploit appropriate scaling laws
of the Hamiltonian interactions to account for strain effects. Spin–orbit
interaction is also included in the Hamiltonian. We first provide the valence
and conduction band offsets at the heterointerfaces between Si1−xGex and
Si1−yGey , as well as the fundamental energy gap for Si1−xGex strained alloys.
We are thus able to distinguish the region in the (x, y) plane where robust type-
I alignment is achieved. Then this information on band alignment is exploited
to propose a heterostructure which is both type I in �r -space and direct in �k-
space. With this aim we adopt the decimation–renormalization method for the
determination of the electronic properties of the multilayer structure; from the
Green’s function the energy spectrum and the partial and the total densities
of states projected on each layer of the system are obtained. Our conclusion
is that by suitable control of alloying, stress, band offsets and folding, truly
direct (both in �r - and in �k-space) semiconducting heterostructures based on
silicon and germanium can be realized. As an example, the case of pure Ge
sandwiched between Si0.25Ge0.75 alloys, grown on a Si0.2Ge0.8 substrate, is
fully discussed.

1. Introduction

In recent years a growing interest has been devoted to the study of coherently strained
Si1−x Gex alloy layers pseudomorphically deposited on Si(001) substrates. The bonus of
bandgap engineering [1] that these systems offer to the integration into Si-based electronics
and photonics is the main reason for their technological interest [2–4]. In several applications
the electrically active Si1−xGex material is grown not on pure Si but on a relaxed Si1−yGey
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substrate, or it is sandwiched between regions with defined Si/Ge alloy composition. It is
well known [5] that for the unstrained Si1−x Gex bulk alloy the electronic band structure is
Si-like with sixfold degenerate conduction bands along the �-directions if the Ge content is
less than 85%, while it assumes Ge-like character with a conduction band minimum at the L
point for x > 85%. The bulk alloy lattice constant varies almost linearly with Ge composition
as predicted by Vegard’s law even if small deviations from it have been detected [6]. Thus
the lattice mismatch between Si1−xGex and Si1−yGey depends on the Ge content both in the
active layer and in the adjacent alloy. This consequently determines the type of strain along
the growth plane in the active material, which is compressive for x > y and tensile for x < y.
According to the values of x and y concentrations (0 � x, y � 1) and the growth direction,
a variety of different band structures and charge carrier effective masses can be tailored
because of the control of chemical composition, of strain conditions and of band offsets. In
particular, the problem of defining for a given set of concentrations (x, y) the corresponding
band alignment soon emerged as a central item in the theoretical and experimental study
of Si/Ge devices (for a review see [1, 2]). Many theoretical and experimental papers have
addressed the determination of band alignment, mainly in Si1−x Gex alloy epitaxially grown
on pure Si in the (001) direction. For such heterostructures general consensus exists on the
fact that the alloy active layer constitutes a quantum well for the holes, but the conduction band
lineup has appeared more elusive due to the requirement to assign precisely the position of
the split �2 and �4 conduction valley energies in the presence of alloying and strain effects.
In the end, type-I and type-II band alignment is still a matter of debate for general Si/Ge
heterostructures. For the commonly studied (001) heterostructure made by Si1−xGex on pure
Si, early theoretical studies based on deformation potential theory [7] and ab initio pseudo-
potential in the local density approximation [8] support type-I lineup for low Ge content.
Further calculations based on empirical pseudopotential [9] indicate type-II alignment for all
Ge concentrations of the alloy grown on unstrained Si substrate; moreover, type-I alignment
is evidenced [9] when a Ge rich active material (0.75 � x � 1) is grown on a Ge rich
alloy substrate (0.7 � y � 1). The effective mass model for the evaluation of excitonic
wavefunctions in Si0.7Ge0.3 quantum wells [10] has also proven useful to discriminate
between type-I and type-II offsets as proposed by photoluminescence experiments. From
the experimental side the question of conduction band lineup at the SiGe/Si heterointerface
is still debated. Interpretation of photoluminescence (PL) measurements are made difficult
from band-bending, band-filling and binding-energy effects. The analysis of the dependence
of the PL energies on intensity [11, 12], on geometry [13] and on hydrostatic [14] and
biaxial [15, 16] strain has led authors to claim type I [13–15] and type II [12, 11, 16],
alternatively. The first aim of this paper is to provide a full description of valence band and
conduction band alignment in a Si1−xGex strained active material epitaxially grown on a
relaxed Si1−yGey buffer along the (001) direction, for any Ge concentration 0 � x, y � 1.
With respect to previous calculations in the literature [9], we use an sp3d5s

∗
nearest-neighbour

tight-binding Hamiltonian [17] which has proven very efficient in the study of Ge quantum
wells separated by Si regions of arbitrary width [18]. This Hamiltonian takes into account
spin–orbit interactions and can easily consider strain effects by means of suitable scaling laws
for the hopping parameters and appropriate elaboration of the tight-binding geometrical phase
factors. We confirm a large part of the theoretical results obtained by the authors of [9] by
means of the empirical pseudo-potential method; in addition, our results support evidence of
inverted type-I alignment (VBO< 0, CBO> 0) in the (x, y) region where the calculations
of [9] seem elusive. After having defined the regions of (x, y) space where type-I or type-
II alignments occur, we have addressed the problem of the design of a device with direct
gap both in �r -space and in �k-space. For this we have investigated the most general family



Type-I alignment and direct fundamental gap in SiGe based heterostructures 1023

of structures constituted by a Si1−xGex active material embedded between two Si1−yGey

regions, grown on a relaxed (001)-Si1−zGez substrate. Due to the huge number of atoms
in this kind of structure, the decimation–renormalization �r -space method has been adopted
to obtain the eigenvalues and eigenfunction of the whole device. The paper is organized as
follows: in section 2 we present the theoretical approach used and the results concerning
the band structure of the (001) tetragonally distorted Si1−xGex alloy on relaxed Si1−yGey

substrate, for any value of the x and y Ge concentrations. In section 3 we exploit the results
obtained in section 2 to design a heterostructure which is type I in �r -space and direct in
reciprocal space. As an example we report the electronic structure of pure Ge embedded in a
thick region of Si0.25Ge0.75, grown on a relaxed Si0.2Ge0.8 substrate, and we show that it is
indeed a genuine type-I and direct-gap material. A comparison is also reported between the
optical matrix element of the fundamental transition in this structure and the direct �+

8 → �−
6

transition in bulk Ge. Section 4 contains the conclusions.

2. Band lineups of strained Si1−xGex alloys on Si1−yGey substrates

In this section we study the electronic structure of (001)-tetragonally distorted Si1−xGex

alloys grown on cubic Si1−yGey alloys. Following [9] we indicate the strained Si1−xGex

layers as the active material and the relaxed Si1−yGey alloy as the substrate. Furthermore,
we define as lateral and orthogonal (or growth) the directions parallel and perpendicular to the
heterointerface, respectively. For x > y the active layer is biaxially compressed in the lateral
direction (for x < y the strain is tensile) due to the matching of its lateral lattice constant a‖
with the relaxed substrate lattice constant. As a function of the lattice constant a0(Ge) and
a0(Si) for pure Ge and pure Si, respectively, the substrate bulk alloy lattice constant is given
by [9, 19]

a0(y) = a0(Si)+ 0.200 326 y (1 − y) + [a0(Ge)− a0(Si)] y2 Å. (1)

The orthogonal lattice constant in the active material is well reproduced by elasticity theory [4]
and is given by

a⊥(x) = a0(x)

(
1 − 2

c12(x)

c11(x)

a‖(x)− a0(x)

a0(x)

)
, (2)

where a0(x) is the lattice constant of the relaxed active layer and c11(x) and c12(x) are the
elastic constants of the alloy obtained interpolating linearly between the values for pure Si
and pure Ge [20]. The electronic Hamiltonian of the system is represented by an sp3d5s

∗

nearest-neighbour tight-binding model. We have adopted the semi-empirical parameters of
bulk pure Si and Ge and their scaling laws reported in [17]. Once the interatomic distances
and the strain tensor in the alloy lattice are known, the geometrical phase factors of the
tight-binding Hamiltonian are modified according to the new interatomic distances while site
energies and Slater–Köster hopping interactions are scaled as given in [17]. The virtual-
crystal approximation is adopted to obtain the alloy parameters, with linear interpolation of
self-energies and two-centre integrals. This procedure uniquely defines the tight-binding first-
neighbour Hamiltonian of the substrate and of the active material. We have first studied
the electronic band structure of the isolated infinite crystal alloy Si1−xGex under the same
strain conditions it suffers when epitaxially grown on a (001)-Si1−yGey substrate, i.e. with
a‖(x) = a0(y) and a⊥(x) given by expression (2). The results are reported in figures 1(a)–(d).
Figure 1(a) shows the fundamental energy gap of the active material as a function of x and y.
The line x = 0 represents the case of pure strained Si grown on an alloy with Ge fraction y;
the line y = 0 reproduces the gap of a strained alloy with x Ge fraction, grown on pure Si and
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Figure 1. (a) Fundamental bandgap energies; (b) valence band offsets; (c) conduction band offsets
and (d) band-edge profiles of Si1−x Gex alloy as a function of the Ge concentration in the strained
active material (x axis) and y Ge concentration in the alloy substrate (y axis) which determines
the a‖ lattice constant of the active layer (see text). Energies are in electronvolts.

so on. Our calculations qualitatively confirm the results of [9]: the biaxial distortion breaks
the sixfold degeneracy of the � line in �k-space giving rise to a twofold degenerate �⊥ axis
and a fourfold degenerate �‖ axis. We can therefore distinguish in figure 1(a) three domains
according to the point in the �k space which realizes the bottom of the conduction band: a first
region, for x < y, where the bottom is along the orthogonal axis �⊥, a second region for
x > y where it is along the parallel direction �‖, and a third one characterized by weakly
strained alloys with high Ge content where the bottom of the conduction band occurs at the L
point and then the alloy is Ge-like. The gap assumes its largest value for the case of relaxed Si
(x = 0, y = 0), and the smallest value for strained pure Ge grown on pure Si (x = 1, y = 0).
In the literature some authors (see for instance [9, 3]) find that the fundamental energy gap
of strained Ge grown on Si is larger than that of strained Si grown on Ge substrate while
others [21, 22] support the opposite. The first step for the evaluation of the band lineups
at the heterointerface is the knowledge of the valence band offset (VBO) between strained
Si1−x Gex active layer and the relaxed Si1−yGey substrate. Figure 1(b) reports the results
obtained exploiting the valence band offsets calculated for pure Si/Ge interfaces in the whole
range of strain conditions [23] and interpolating linearly between the Si/Ge value and zero,
which occurs for the interface between relaxed Si1−yGey and strained Si1−xGex with x = y;
eventually we obtain

VBO(x, y) = (x − y) (0.74 − 0.53y) eV. (3)
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Figure 2. Schematic representation of the (001)-grown Si/Ge heterostructure described in the text.

We just want to stress that VBO(x, y) is greater than zero for x > y and reaches the maximum
value of 0.74 eV for fully strained germanium on Si (x = 1, y = 0). From the knowledge
of the fundamental bandgap and of the valence band offsets, we can evaluate the conduction
band offset (CBO), which is defined as the difference between the lowest conduction band
energy in the active layer and in the substrate. Thus a negative (positive) CBO means type-I
(II) band alignment. Figure 1(c) summarizes our result. As in [9] we find positive CBOs
for all x if the substrate is poor in Ge concentration. We confirm that negative CBO, up to
−0.3 eV, characterizes the region with x < 0.3 and 0.4 < y < 0.8. It is worth mentioning
that our numerical values for this region are smaller in modulus than those reported in [9],
and are closer to the results obtained in the same (x, y) region by Schäffler [3] by means of
deformation potential theory and by Paul [2], who reports values obtained scaling those of [9]
to fit experimental evidence. Moreover, the values of the CBOs in the upper-right corner of
figure 1(c) below the diagonal are also negative, as in [9, 3], although larger in magnitude:
for example, for x = 1 and y = 0.8 we have CBO = −0.224 to be compared with the
value CBO � −0.1 eV reported in [9]. Finally, a novelty of our results is the presence of
a (x, y) region defined by 0.4 < x < 1 and 0.8 < y < 1, evidenced in figure 1(c) by an
upside triangular shape, which is characterized by positive CBOs up to the value 0.187 eV
for x = 0.74 and y = 1. This region is absent in [9] where the active material with x < y
always presents a negative CBO but it is predicted in [3, 24]. Before concluding this paragraph
we summarize our result for band alignment as shown in figure 1(d); in the (x, y) space we
distinguish four regions according to the sign of VBO and CBO produced at the interface. In
region (i) VBO < 0 and CBO < 0, in region (ii) VBO < 0 and CBO > 0, in region (iii)
VBO > 0 and CBO < 0 and finally in region (iv) VBO > 0 and CBO > 0. As is well known,
a type-I alignment for band edges, that we predict for region (iii), is well suited for opto-
electronic application: embracing a slice of active layer from both sides with cubic Si1−yGey

alloys and choosing (x, y) in region (iii), we obtain a device with both types of carriers at the
fundamental gap spatially confined in the active layer zone. In the next paragraph we further
investigate this region with an analysis of the �k-space structure of the energy bands.

3. Direct gap—type-I Si/Ge heterostructures

From the information on band alignment presented in the previous section we investigate
now the possibility of realization of a type-I heterostructure with fundamental gap occurring
between states at the same �k-point. Allowed direct transitions both in �r - and in �k-space
should significantly increase the efficiency of charge recombination in the device. Occurrence
of a direct gap and confinement of holes and electrons in the active material region can
be demonstrated only by diagonalizing the Hamiltonian operator that describes the whole
structure made by buffer, spacer material and active material (see figure 2). This operator
is constructed following the approach outlined in the previous section for the case of
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bulk materials and accounts for strain and spin–orbit effects as already discussed. The
VBO between regions of the system with different Ge content is inserted as an additional
contribution to the diagonal matrix elements of the system Hamiltonian. The general
heterostructures we have analysed can be described as follows (see figure 2): na layers of
active Si1−xGex material with Ge concentration x are embedded between two thick spacer
regions of Si1−yGey alloys with Ge concentration y. Each spacer region consists of ns layers.
The lattice constant in the plane parallel to the interface is determined by a virtual relaxed
Si1−zGez substrate. The interlayer separations in the active and in the spacer regions are given
by a⊥(x)/4 and a⊥(y)/4, respectively. These lengths are evaluated by equation (2), where
the a‖ value is determined by the Ge concentration in the substrate. In this way we have
the possibility to tune independently both the strain conditions (varying the z concentration
parameter and thus a‖) and the valence band offset between the spacer and the active region
(varying the y concentration parameter). Note that both the spacer and the active alloys are
tetragonally distorted. If the spacer regions are thick enough the region of the active material
can be considered as an isolated quantum well. Periodic boundary conditions are imposed on
the supercell with ahs⊥ orthogonal extension along the (001) direction. In our simulations we
have chosen na + ns = 800 and na varying from 4 up to 100. As a consequence, the primitive
cell contains 800 atoms. Thus the evaluation of band structure at a generic �k-point requires
the diagonalization of a matrix of order 2 × 10 × 800, 800 being the total number of layers in
the primitive cell and 2 × 10 (ten orbitals and two spin states) the number of basis functions
localized on each layer. The tight-binding renormalization method is particularly efficient
in treating such long period superlattices. We have presented elsewhere the details of this
method, thus we summarize here only a few steps of the procedure. The Hamiltonian of the
whole system is first represented on the basis of two-dimensional Bloch sums built from layer
orbitals [25, 26]. Then an iterative decimation–renormalization procedure is performed [27]
to reduce the cell to a couple of interacting effective layers where the Green’s function can be
evaluated. At each step of the iteration only inversion of small (20 × 20) matrices is required.
From the Green’s function the spectral properties of the system are obtained without explicit
diagonalization of the Hamiltonian; in particular layer and orbital resolved electron and hole
densities can be deduced. The basis vectors of the (tetragonal) primitive cell of the device are
�w1 = a‖

2 (110), �w2 = a‖
2 (110) and �w3 = ahs

⊥ (001); a‖ is given by the matching condition with
the relaxed Si1−zGez substrate, ahs⊥ measures the extension of the cell in the growth direction
(see figure 2) and is obtained by multiplying the number of layers of each region by their
mutual separation deduced from equation (2), and then summing the contributions from the
two strained regions. Due to the large periodicity of the system along the growth direction the
first Brillouin zone has vanishing thickness in the same direction. This implies that folding
effects are expected for the states along the (001) line. Just to make an example, if we describe
a bulk Si crystal as a long period multilayer made of a very large number of Si planes, the
eigenvalues corresponding to the L point at 2π

a‖ (
1
2

1
2

1
2 ) fold into the two dimensional Brillouin

zone at the L′ point with coordinates 2π
a‖ (

1
2

1
2 0). Similarly, the �⊥ line folds into the � point

but the �‖ lines remain unaltered: this folding mechanism is more complex for short period
superlattices [28, 29] and is crucial to obtain a direct gap device. Guided by the information
obtained from figure 1(d) we have focused on the multilayer structure shown in figure 2, with
parameters x = 1, y = 0.75 and with a‖ determined by a substrate alloy with z = 0.8. In
fact, if we preliminarily neglect the (small) strain conditions present in the spacer material, the
chosen (x, y) concentration values belong to region (iii) of figure 1(d), thus providing a type-I
heterointerface. Before presenting the results obtained from the full diagonalization of this
heterostructure, we formulate the same preliminary analyses based on folding considerations
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L Γ X
|| Γ X⊥

(a) (b)

y=0.75

L Γ X
|| Γ X⊥

1.03689
0.9841

1.0319
1.0665

1.1746

1.0498 1.0342

x=1

0.8257

Figure 3. Conduction band profiles of the isolated spacer region alloy (a) and of the isolated active
region (b) alloy with Ge concentration y = 0.75 and x = 1, respectively. a‖ is matched with the
lattice constant of the substrate alloy whose Ge concentration is z = 0.8. The zero of energy is
fixed at the top of the valence band of the spacer material. Dashed lines are a reference for the eye
and energies are in electronvolts.

and band edge profiles of the isolated alloy Si0.25Ge0.75 and of the isolated pure Ge crystal,
both tetragonally deformed to account for the a‖ lattice constant required by matching with
a relaxed substrate alloy Si0.2Ge0.8. The VBO in the Ge active material region amounts to
0.079 eV, thus it acts as a well for the holes at the top of the valence band, at the � point.
The VBO between the y and x regions is evaluated using the top of the valence band in the
substrate as reference energy; in the plots shown in the following we use as zero energy of the
complete structure the top of the valence band in the y region. The results for the conduction
band structures are reported in figure 3(a) for the spacer material and in figure 3(b) for the
active material, respectively. From figures 3(a) and (b) it is evident that the minimum of the
conduction bands is at the L point in the active material and that EL(x) < EL(y). Therefore,
we argue that when we pass to the corresponding multilayer structure of figure 2, at the folded
L′ point (�k = 2π

a‖ (
1
2

1
2 0)) the potential experienced by the conduction electrons produces states

confined in the active region material. The same situation is expected for the minimum along
the �‖ lines which occurs for both alloys at about 0.85 of the �–X‖ separation, no folding
effect being in fact expected for the �‖ lines. As concerns the �k points along the �⊥ line
we see from figure 3(a) that in the spacer (y) material the minimum along the �⊥ line is
lower in energy than the minimum along the �‖ line (see also figure 1(a) for the region of
biaxial tensile strain). As already noticed, this energy separation is due to the biaxial strain
deformation induced by the z cubic substrate. Furthermore, the energy of the minimum along
�⊥ in the active material is slightly lower in energy than in the spacer material. This means
that another well for electrons is expected along�⊥; the confined states in this well are folded
at � and are lower in energy than the unfolded states at �. The scheme of figure 4 summarizes
the potential profile for the conduction electrons of the complete multilayer that we predict
for �k-points at L′, � and along �‖ (the states along �⊥ are folded in �). It is appropriate
to remark once more that strain in the spacer material is essential to make the edges of the
well at � lower than those at �‖. This makes evident the need of a third alloy acting as cubic
substrate. It is interesting to examine the crucial role played by confinement induced by the
active material thickness. Suppose first that the active Ge region consists of a large number
of layers. Then the well width for the conduction electrons is large and the lowest confined
states lie near to the bottom of each well (figure 4, solid lines). As a consequence, the lowest
conduction state occurs at L′ and its energy tends to the limit value of 0.8257 eV, which is the
lowest energy value of conduction electrons in the strained active region at L; see figure 3(b).



1028 M Virgilio and G Grosso

Figure 4. Schematic view of the well energy profiles at L′, �‖ and � experienced by electrons at
the bottom of the conduction band of the Si0.25Ge0.75/Ge structure defined in the text. The energy
levels for the confined states are reported with solid lines for the case na = 80 and with dashed
lines for na = 4. The dotted–dashed line is a reference for the eye. The reference of energy is at
the top of the valence band in the spacer material.

The fundamental gap is thus indirect in �k-space; in fact the topmost of the valence bands of the
complete structure is always at the � point. If we now choose an active region composed by
few layers the lowest confined states at L′, �‖ and � rise in energy approaching the edges of
each well (see figure 4, dashed lines). Therefore, due to the fact that E�‖(y) > E�⊥(y), in the
limit of thin active region, the lowest (confined) state lies at �. This means that a transition
from �k-indirect to �k-direct gap material should be observed as the number of layers of the
active region decreases. Figure 5 demonstrates that a full band structure calculation obtained
by the decimation–renormalization procedure confirms our conjectures. Figures 5(a) and (c)
correspond to the active region made by na = 4 and na = 80 monolayers, respectively. As
a check calculation, we have also evaluated the electronic structure for the case na = 0,
i.e. considering only the 800 monolayer thick Si0.25Ge0.75 strained alloy. The results reported
in figure 5(b) are thus the �-folded picture of the band structure shown in figure 3(a). The
total number of layers for the structures described in the figures 5(a)–(c), is ns + na and
is kept constant and equal to 800. In the case of large (na = 80) well width, four (two)
confined bands at L′ (�‖) are clearly visible if figure 5(c). In the few monolayer regime
(na = 4) the wells confine only one level (see also figure 4), which is close to the edge of
the wells and hence near in energy to the continuum of states visible in figure 5(a) at the
L′ point (the confined state at �‖ is too close to the continuum levels to be visible on this
energy scale). These subbands lie above the bottom of the conduction level, which is at
the � point. The inset of figure 5(b) shows a detail of the conduction energy bands around
the � point for the structure of figures 5(a) and (b). The presence of a confined state at �
is evident and this realizes a genuine fundamental direct gap both in real and in �k-space.
The numerical values of the eigenvalues with energy below the edges of the wells at L′, �
and �‖ are reported in figure 4. To check the spatial confinement of these states, we have
calculated for each of them the density of states projected on the layers of the structure. Some
of them are reported in figure 6. We notice that although the best confinement effect occurs
for the deepest well at L′, a few millielectronvolts of well depth at � are enough to produce
confinement. We have checked that also the topmost valence state, which occurs at �, is
confined in the active material region, and this confirms the possibility of a direct-gap type-I
transition in the device. This fundamental transition is dipole allowed as we have verified,
analysing the angular momentum character of the states involved in the transition.

Eventually we have evaluated the dipole matrix elements along x̂, ŷ and ẑ directions for
the direct fundamental transition (na = 4), which is the key information for an optically
useful device. In our tight-binding scheme only the self-energies and hopping parameters
of the Hamiltonian are used and no explicit knowledge of the localized basis set {ψi } is
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Figure 5. Conduction band structures of the system represented in figure 2 with na = 4 (a),
na = 0 (b) and na = 80 (c) monolayers in the active Ge region. ns + na is kept constant and
equal to 800. The inset shows a detail of the band structure around the � point of (a) (black bands)
superimposed on the band structure corresponding to the case n = 0 (grey bands).

(This figure is in colour only in the electronic version)

required. As a consequence, after diagonalization of the matrix Hamiltonian, the �p matrix
elements between the states involved in the transitions are obtained from the relation [30, 31]
〈ψi | �p|ψ j 〉 � im〈ψi |H |ψ j 〉 �di j /h̄, where �di j is the vector connecting the orbitals in sites i
and j . Before applying this scheme of calculus to the system of interest, we have checked
its reliability, verifying that the dipole selection rules for x̂, ŷ and ẑ polarization, derived in
the paper of [21] in the case of biaxially strained bulk materials, are respected. Furthermore,
we have verified that states of bulk materials which fold at the � point when an artificial long
period multilayer description is adopted (as is the case of figure 5(b)) have zero dipole matrix
element with the � topmost valence state, as one can expect due to the fact that these states
do not belong to � representations. On the other hand, this is not the case for the direct gap
heterostructure under investigation due to the presence of interfaces and confinement effects.
Indeed, we have found that the fundamental direct transition at � is dipole allowed for ẑ-
polarization, but the value of the matrix element is two orders of magnitude smaller than the
optical transition �+

8 → �−
6 in bulk Ge under the same strain conditions.

4. Conclusions

We have adopted an sp3d5s∗ first neighbour tight binding Hamiltonian with spin–orbit
coupling to evaluate the electronic properties of strained Si1−xGex alloy grown on Si1−yGey
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Figure 6. Localization properties of the wavefunction square amplitude for the lowest conduction
states at L′, � and �‖ in the case of active Ge material made by na = 4 monolayers (upper row)
and for na = 80 (lower row). The plots represent the integration of the density of states in a small
energy region around the eigenvalue of the state. The dashed lines indicate the Ge well region.
The topmost valence state is located in the same Ge region.

relaxed substrate along the (001) direction. The strain effects are treated by means of a
set of scaling laws for the hopping energies of the biaxially distorted lattice together with
exact calculation of the geometrical phase factors. Linear interpolation with respect to
Ge concentration is used both to define the alloy tight-binding parameters and the valence
band offsets. We have obtained the fundamental energy gap for the strained alloy and
the conduction and valence band offsets at the heterointerface in the whole range of Ge
concentrations, both in the strained material and in the substrate. Some of our results are
in qualitative agreement with the results of Rieger and Vogl [9] obtained from the empirical
pseudopotential method. In particular, we confirm a small positive CBO for the strained
Si1−x Gex alloy with 0 < x < 1 grown on Si substrate. Furthermore, as for the authors
of [9], robust type-I alignment for Ge-rich strained alloys on Ge-rich substrate is obtained.
Anyway, we observe a region centred around x � 0.7 and y � 1 in the (x, y) plane which
is absent in [9]. This region is characterized by negative VBO and positive CBO and is also
predicted in the review article by Schäffler [3]. To our knowledge, no experimental evidence
exists to characterize spatial confinement of charges in the conduction band of multilayer
structures with high Ge concentration both in the active region and in the substrate. Indeed,
the interest in such heterostructures has recently grown, mainly motivated by the study of
valence intersubband transitions [32].

With the purpose of obtaining a type-I and direct fundamental gap device, in the second
part of this work we investigated a family of multilayer Si/Ge heterostructures composed by
a region of active material embedded in a spacer alloy. The lattice constant of the multilayer
has been determined by the presence of a third material acting as virtual substrate: this has
allowed us to vary strain conditions independently from band lineups at the heterointerfaces.
Proper alloy conditions in the substrate, spacer and active regions which lead to type-I and
direct gap devices have been found. The case of pure Ge between Si0.25Ge0.75 alloy grown
on a Si0.2Ge0.8 substrate has been chosen to present a type-I direct gap heterostructure.
The �k-direct fundamental transition localized in the Ge region is indeed dipole allowed as
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confirmed by optical matrix element analysis but remains two orders of magnitude smaller
than a typical direct transition in bulk germanium. We have verified that once the direct gap
conditions are realized for the four-monolayer germanium well with the chosen values of x
and z concentrations the direct nature of the fundamental transition is preserved, provided the
width of the spacer guarantees the folding of the �⊥ minima into the � point. This enriches
the flexibility of the proposed geometry for practical realizations.
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